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In [HW22], the diagonal reduction algebra Z(®, g; D) of the Lie
superalgebra 0sp(1|2) is initially given as a quotient algebra isomoprhic to
the superalgebra A
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e &: Lie superalgebra 0sp(1]2) x osp(1]2)

e 0: 05p(12) - &, x— (x,x) diagonal embedding
e g: reductive image of 0sp(1]|2) under §

e p: reductive complement of g:  (p D g grmeodules &)

e §: Cartan sublagebra of g: CH

o D: ({H+n|n€Z})monoid multipicative set
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e basis of 0sp(1]2) : {x_2a, X—a, h, Xa, X2a }

e supercommutator [-, -] (and with the usage of + = —F as a
dependent parallel within any single equation):

[h, X+ ka] = FhXtkas [X_ka»>Xka] = h, k € {1,2},

[X:i:om X:ta] - :‘:2X:i:2047 [X:I:on X:F2a] = XFa; [X:t2a7 X:ta] =0.
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e basis of 0sp(1]2) : {x_2a, X—a, h, Xa, X2a }
e supercommutator [-, -] (and with the usage of + = —F as a

dependent parallel within any single equation):

[h, X+ ka] = FhXtkas [X_ka»>Xka] = h, k € {1,2},

[X:i:om X:ta] - :‘:2X:i:2047 [X:I:on X:F2a] = Xzxa; [X:t2a7 X:ta] =0.
e triangular decomposition:

osp(l)2) =n_@dhdny, bh=Ch, ny=Cxuzq®Cxuiq
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e R=D71U(H) ring of dynamical scalars
e DYU(H)=C[H][(H—n)"t| neZ
® XB = (Xﬂvxﬂ) €9
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e R=D71U(H) ring of dynamical scalars
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R = D71U(#®) ring of dynamical scalars
D7YU(®) = C[H][(H—n)"Y| ne Z]

XB = (Xﬂvxﬂ) €g
e Xjg is identified with x3 ® 1 + 1 ® x3 € U(®) as an element of
R ®u(s) U(®)

;5 - (Xﬁ7 _Xﬁ) €p
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R = D71U(#®) ring of dynamical scalars
D7YU(®) = C[H][(H—n)"Y| ne Z]
XB = (Xﬂvxﬂ) €9
e Xj is identified with x3 ® 1 +1® xg € U(®) as an element of
R®U(y]) U(®)
;5 = (Xﬁ7 _Xﬁ) cp
e Xg is identified with x3 ® 1 — 1 ® xg € U(®) as an element of
R @y(s) U(®)
H for (h,h) € g
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R = DtU($) ring of dynamical scalars
D7YU(®) = C[H][(H—n)"Y| ne Z]
Xz = (Xﬂ,X@) €g
e Xj is identified with x3 ® 1 +1® xg € U(®) as an element of
R ®uy(s) U(®)
Xs = (X3, —x3) € p
e Xg is identified with x3 ® 1 — 1 ® xg € U(®) as an element of
R @u(s) U(®)
H for (h,h) € g
e His identified with h® 14+ 1® h € U(®) as an element of
R ®U(f3) U(@)
hfor (h,—h) € p
e his identified with h® 1 —1® h € U(®) as an element of
R ®U(yj) U(@)
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e Underlying the theory is the g-module decomposition

G=gop=M_0HON,)OH_Ohony)

Ny = CXpoy & CXiq
h=Ch

4 = CXion @ Cxiq
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e Underlying the theory is the g-module decomposition
G=gop=M_oHoN)em-chan,)
e g=p, XX
Ny = CXi2a ® CXia

h=Ch

4 = CXion @ Cxiq

o U= R®U(y)) U(®)
o | = Um+
o Z=27(8,9;D) = Ny(l)/I Ny(!) is the normalizer of | in U
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e Z is called the diagonal reduction algebra of osp(1|2)
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e canonical projection of super vector spaces U — U/II induces an
isomorphism of Z with the algebra A

Z~A=(U/ILO)
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Z is called the diagonal reduction algebra of osp(1]2)
Below: “double I" is the subspace Il = UMty + 9_U,

canonical projection of super vector spaces U — U/II induces an

isomorphism of Z with the algebra A
Z=A=(U/I,9)

e { is an associative product on the double coset space U/II defined
through the extremal projector [Tol85; Tolll; HW22].
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Z is called the diagonal reduction algebra of osp(1]2)
Below: “double I" is the subspace Il = UMty + 9_U,

canonical projection of super vector spaces U — U/II induces an
isomorphism of Z with the algebra A

Z~A=(U/ILO)

{ is an associative product on the double coset space U/II defined
through the extremal projector [Tol85; Tolll; HW22].

Generators of the reduction algebra A (as an R-ring): X3 = x5 + 11,
h=h+1I
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For a more thorough account of superified spaces, their maps, and other
non-classical notions: [CW12; Mus12] or Section 2-b of [BKO02].
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[BK02]

[CW12]

[HW22]

[Mus12]
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