The diagonal reduction superalgebra of $\mathfrak{o s p}(1 \mid 2)$ and its representations

math δ wight

Dwight Anderson Williams II
LAAMP Seminar
22 February 2023

Department of Mathematics and Statistics
(Comona

In [HW22], the diagonal reduction algebra $Z(\mathfrak{G}, \mathfrak{g} ; D)$ of the Lie superalgebra $\mathfrak{o s p}(1 \mid 2)$ is initially given as a quotient algebra isomoprhic to the superalgebra A

- $\mathfrak{G}:$ Lie superalgebra $\mathfrak{o s p}(1 \mid 2) \times \mathfrak{o s p}(1 \mid 2)$
- \mathfrak{G} : Lie superalgebra $\mathfrak{o s p}(1 \mid 2) \times \mathfrak{o s p}(1 \mid 2)$
- $\delta: \mathfrak{o s p}(1 \mid 2) \rightarrow \mathfrak{G}, \quad x \mapsto(x, x)$
diagonal embedding
- \mathfrak{G} : Lie superalgebra $\mathfrak{o s p}(1 \mid 2) \times \mathfrak{o s p}(1 \mid 2)$
- $\delta: \mathfrak{o s p}(1 \mid 2) \rightarrow \mathfrak{G}, \quad x \mapsto(x, x)$

diagonal embedding

- \mathfrak{g} : reductive image of $\mathfrak{o s p}(1 \mid 2)$ under δ
- \mathfrak{G} : Lie superalgebra $\mathfrak{o s p}(1 \mid 2) \times \mathfrak{o s p}(1 \mid 2)$
- $\delta: \mathfrak{o s p}(1 \mid 2) \rightarrow \mathfrak{G}, \quad x \mapsto(x, x)$

diagonal embedding

- \mathfrak{g} : reductive image of $\mathfrak{o s p}(1 \mid 2)$ under δ
- \mathfrak{p} : reductive complement of $\mathfrak{g : ~} \quad(\mathfrak{p} \oplus \mathfrak{g} \stackrel{\mathfrak{g} \text {-modules }}{=} \mathfrak{G})$
- \mathfrak{G} : Lie superalgebra $\mathfrak{o s p}(1 \mid 2) \times \mathfrak{o s p}(1 \mid 2)$
- $\delta: \mathfrak{o s p}(1 \mid 2) \rightarrow \mathfrak{G}, \quad x \mapsto(x, x)$

diagonal embedding

- \mathfrak{g} : reductive image of $\mathfrak{o s p}(1 \mid 2)$ under δ
- \mathfrak{p} : reductive complement of $\mathfrak{g : ~} \quad(\mathfrak{p} \oplus \mathfrak{g} \stackrel{\mathfrak{g} \text {-modules }}{=} \mathfrak{G})$
- \mathfrak{H} : Cartan sublagebra of $\mathfrak{g}: \mathbb{C H}$
- \mathfrak{G} : Lie superalgebra $\mathfrak{o s p}(1 \mid 2) \times \mathfrak{o s p}(1 \mid 2)$
- $\delta: \mathfrak{o s p}(1 \mid 2) \rightarrow \mathfrak{G}, \quad x \mapsto(x, x)$

diagonal embedding

- \mathfrak{g} : reductive image of $\mathfrak{o s p}(1 \mid 2)$ under δ
- \mathfrak{p} : reductive complement of $\mathfrak{g : ~} \quad(\mathfrak{p} \oplus \mathfrak{g} \stackrel{\mathfrak{g} \text {-modules }}{=} \mathfrak{G})$
- \mathfrak{H} : Cartan sublagebra of $\mathfrak{g}: \mathbb{C H}$
- $D:\langle\{H+n \mid n \in \mathbb{Z}\}\rangle_{\text {monoid }}$
- basis of $\mathfrak{o s p}(1 \mid 2):\left\{x_{-2 \alpha}, x_{-\alpha}, h, x_{\alpha}, x_{2 \alpha}\right\}$
- basis of $\mathfrak{o s p}(1 \mid 2):\left\{x_{-2 \alpha}, x_{-\alpha}, h, x_{\alpha}, x_{2 \alpha}\right\}$
- supercommutator $[\cdot, \cdot]$ (and with the usage of $\pm=-\mp$ as a dependent parallel within any single equation):

$$
\begin{gathered}
{\left[h, x_{ \pm k \alpha}\right]=\mp k x_{ \pm k \alpha}, \quad\left[x_{-k \alpha}, x_{k \alpha}\right]=h, \quad k \in\{1,2\},} \\
{\left[x_{ \pm \alpha}, x_{ \pm \alpha}\right]=\mp 2 x_{ \pm 2 \alpha}, \quad\left[x_{ \pm \alpha}, x_{\mp 2 \alpha}\right]=x_{\mp \alpha}, \quad\left[x_{ \pm 2 \alpha}, x_{ \pm \alpha}\right]=0 .}
\end{gathered}
$$

- basis of $\mathfrak{o s p}(1 \mid 2):\left\{x_{-2 \alpha}, x_{-\alpha}, h, x_{\alpha}, x_{2 \alpha}\right\}$
- supercommutator $[\cdot, \cdot]$ (and with the usage of $\pm=-\mp$ as a dependent parallel within any single equation):

$$
\begin{gathered}
{\left[h, x_{ \pm k \alpha}\right]=\mp k x_{ \pm k \alpha}, \quad\left[x_{-k \alpha}, x_{k \alpha}\right]=h, \quad k \in\{1,2\},} \\
{\left[x_{ \pm \alpha}, x_{ \pm \alpha}\right]=\mp 2 x_{ \pm 2 \alpha}, \quad\left[x_{ \pm \alpha}, x_{\mp 2 \alpha}\right]=x_{\mp \alpha}, \quad\left[x_{ \pm 2 \alpha}, x_{ \pm \alpha}\right]=0 .}
\end{gathered}
$$

- triangular decomposition:

$$
\mathfrak{o s p}(1 \mid 2)=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}, \quad \mathfrak{h}=\mathbb{C} h, \quad \mathfrak{n}_{ \pm}=\mathbb{C} x_{ \pm 2 \alpha} \oplus \mathbb{C} x_{ \pm \alpha}
$$

- $R=D^{-1} U(\mathfrak{H})$ ring of dynamical scalars
- $R=D^{-1} U(\mathfrak{H})$ ring of dynamical scalars
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $R=D^{-1} U(\mathfrak{H})$
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- $R=D^{-1} U(\mathfrak{H})$ ring of dynamical scalars
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- X_{β} is identified with $x_{\beta} \otimes 1+1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes U(\mathfrak{F s}) U(\mathfrak{G})$
- $R=D^{-1} U(\mathfrak{H})$
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- X_{β} is identified with $x_{\beta} \otimes 1+1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes{ }_{U(\mathfrak{F s})} U(\mathfrak{G})$
- $\widetilde{x}_{\beta}=\left(x_{\beta},-x_{\beta}\right) \in \mathfrak{p}$
- $R=D^{-1} U(\mathfrak{H})$
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- X_{β} is identified with $x_{\beta} \otimes 1+1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes_{U(\mathfrak{F s})} U(\mathfrak{G})$
- $\widetilde{x}_{\beta}=\left(x_{\beta},-x_{\beta}\right) \in \mathfrak{p}$
- \widetilde{x}_{β} is identified with $x_{\beta} \otimes 1-1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes U(\mathfrak{F s}) U(\mathfrak{G})$
- $R=D^{-1} U(\mathfrak{H})$
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- X_{β} is identified with $x_{\beta} \otimes 1+1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes{ }_{U(\mathfrak{F s})} U(\mathfrak{G})$
- $\widetilde{x}_{\beta}=\left(x_{\beta},-x_{\beta}\right) \in \mathfrak{p}$
- \widetilde{x}_{β} is identified with $x_{\beta} \otimes 1-1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes U(\mathfrak{F s}) U(\mathfrak{G})$
- H for $(h, h) \in \mathfrak{g}$
- $R=D^{-1} U(\mathfrak{H})$
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- X_{β} is identified with $x_{\beta} \otimes 1+1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes{ }_{U(\mathfrak{F s})} U(\mathfrak{G})$
- $\widetilde{x}_{\beta}=\left(x_{\beta},-x_{\beta}\right) \in \mathfrak{p}$
- \widetilde{x}_{β} is identified with $x_{\beta} \otimes 1-1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes U(\mathfrak{F}) \cup(\mathfrak{G})$
- H for $(h, h) \in \mathfrak{g}$
- H is identified with $h \otimes 1+1 \otimes h \in U(\mathfrak{G})$ as an element of $R \otimes U_{(\mathfrak{F s})} U(\mathfrak{G})$
- $R=D^{-1} U(\mathfrak{H})$
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- X_{β} is identified with $x_{\beta} \otimes 1+1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes{ }_{U(\mathfrak{F s})} U(\mathfrak{G})$
- $\widetilde{x}_{\beta}=\left(x_{\beta},-x_{\beta}\right) \in \mathfrak{p}$
- \widetilde{x}_{β} is identified with $x_{\beta} \otimes 1-1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes U(\mathfrak{F s}) U(\mathfrak{G})$
- H for $(h, h) \in \mathfrak{g}$
- H is identified with $h \otimes 1+1 \otimes h \in U(\mathfrak{G})$ as an element of $R \otimes U_{(\mathfrak{F s})} U(\mathfrak{G})$
- \widetilde{h} for $(h,-h) \in \mathfrak{p}$
- $R=D^{-1} U(\mathfrak{H})$
- $D^{-1} U(\mathfrak{H})=\mathbb{C}[H]\left[(H-n)^{-1} \mid n \in \mathbb{Z}\right]$
- $X_{\beta}=\left(x_{\beta}, x_{\beta}\right) \in \mathfrak{g}$
- X_{β} is identified with $x_{\beta} \otimes 1+1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes{ }_{U(\mathfrak{F s})} U(\mathfrak{G})$
- $\widetilde{x}_{\beta}=\left(x_{\beta},-x_{\beta}\right) \in \mathfrak{p}$
- \widetilde{x}_{β} is identified with $x_{\beta} \otimes 1-1 \otimes x_{\beta} \in U(\mathfrak{G})$ as an element of $R \otimes U(\mathfrak{F s}) U(\mathfrak{G})$
- H for $(h, h) \in \mathfrak{g}$
- H is identified with $h \otimes 1+1 \otimes h \in U(\mathfrak{G})$ as an element of $R \otimes U_{(\mathfrak{F s})} U(\mathfrak{G})$
- \widetilde{h} for $(h,-h) \in \mathfrak{p}$
- \widetilde{h} is identified with $h \otimes 1-1 \otimes h \in U(\mathfrak{G})$ as an element of $R \otimes U(\mathfrak{F s}) U(\mathfrak{G})$
- Underlying the theory is the \mathfrak{g}-module decomposition

$$
\mathfrak{G}=\mathfrak{g} \oplus \mathfrak{p}=\left(\mathfrak{N}_{-} \oplus \mathfrak{H} \oplus \mathfrak{N}_{+}\right) \oplus\left(\tilde{\mathfrak{n}}_{-} \oplus \tilde{\mathfrak{h}} \oplus \tilde{\mathfrak{n}}_{+}\right)
$$

$$
\begin{aligned}
\mathfrak{N}_{ \pm} & =\mathbb{C} X_{ \pm 2 \alpha} \oplus \mathbb{C} X_{ \pm \alpha} \\
\widetilde{\mathfrak{h}} & =\mathbb{C} \widetilde{h} \\
\tilde{\mathfrak{n}}_{ \pm} & =\mathbb{C} \widetilde{x}_{ \pm 2 \alpha} \oplus \mathbb{C} \widetilde{x}_{ \pm \alpha}
\end{aligned}
$$

- Underlying the theory is the \mathfrak{g}-module decomposition

$$
\mathfrak{G}=\mathfrak{g} \oplus \mathfrak{p}=\left(\mathfrak{N}_{-} \oplus \mathfrak{H} \oplus \mathfrak{N}_{+}\right) \oplus\left(\tilde{\mathfrak{n}}_{-} \oplus \tilde{\mathfrak{h}} \oplus \widetilde{\mathfrak{n}}_{+}\right)
$$

- $\mathfrak{g} \cong \mathfrak{p}, X \leftrightarrow \widetilde{x}$

$$
\begin{aligned}
\mathfrak{N}_{ \pm} & =\mathbb{C} X_{ \pm 2 \alpha} \oplus \mathbb{C} X_{ \pm \alpha} \\
\widetilde{\mathfrak{h}} & =\mathbb{C} \widetilde{h} \\
\tilde{\mathfrak{n}}_{ \pm} & =\mathbb{C} \widetilde{x}_{ \pm 2 \alpha} \oplus \mathbb{C} \widetilde{x}_{ \pm \alpha}
\end{aligned}
$$

- Underlying the theory is the \mathfrak{g}-module decomposition

$$
\mathfrak{G}=\mathfrak{g} \oplus \mathfrak{p}=\left(\mathfrak{N}_{-} \oplus \mathfrak{H} \oplus \mathfrak{N}_{+}\right) \oplus\left(\tilde{\mathfrak{n}}_{-} \oplus \tilde{\mathfrak{h}} \oplus \widetilde{\mathfrak{n}}_{+}\right)
$$

- $\mathfrak{g} \cong \mathfrak{p}, X \leftrightarrow \widetilde{x}$

$$
\begin{aligned}
\mathfrak{N}_{ \pm} & =\mathbb{C} X_{ \pm 2 \alpha} \oplus \mathbb{C} X_{ \pm \alpha} \\
\widetilde{\mathfrak{h}} & =\mathbb{C} \widetilde{h} \\
\tilde{\mathfrak{n}}_{ \pm} & =\mathbb{C} \widetilde{x}_{ \pm 2 \alpha} \oplus \mathbb{C} \widetilde{x}_{ \pm \alpha}
\end{aligned}
$$

- $U=R \otimes_{U(\mathfrak{H})} U(\mathfrak{G})$
- Underlying the theory is the \mathfrak{g}-module decomposition

$$
\mathfrak{G}=\mathfrak{g} \oplus \mathfrak{p}=\left(\mathfrak{N}_{-} \oplus \mathfrak{H} \oplus \mathfrak{N}_{+}\right) \oplus\left(\tilde{\mathfrak{n}}_{-} \oplus \tilde{\mathfrak{h}} \oplus \widetilde{\mathfrak{n}}_{+}\right)
$$

- $\mathfrak{g} \cong \mathfrak{p}, X \leftrightarrow \widetilde{x}$

$$
\begin{aligned}
\mathfrak{N}_{ \pm} & =\mathbb{C} X_{ \pm 2 \alpha} \oplus \mathbb{C} X_{ \pm \alpha} \\
\widetilde{\mathfrak{h}} & =\mathbb{C} \widetilde{h} \\
\tilde{\mathfrak{n}}_{ \pm} & =\mathbb{C} \widetilde{x}_{ \pm 2 \alpha} \oplus \mathbb{C} \widetilde{x}_{ \pm \alpha}
\end{aligned}
$$

- $U=R \otimes_{U(\mathfrak{H})} U(\mathfrak{G})$
- $I=U \mathfrak{N}_{+}$
- Underlying the theory is the \mathfrak{g}-module decomposition

$$
\mathfrak{G}=\mathfrak{g} \oplus \mathfrak{p}=\left(\mathfrak{N}_{-} \oplus \mathfrak{H} \oplus \mathfrak{N}_{+}\right) \oplus\left(\tilde{\mathfrak{n}}_{-} \oplus \tilde{\mathfrak{h}} \oplus \widetilde{\mathfrak{n}}_{+}\right)
$$

- $\mathfrak{g} \cong \mathfrak{p}, X \leftrightarrow \widetilde{x}$

$$
\begin{aligned}
\mathfrak{N}_{ \pm} & =\mathbb{C} X_{ \pm 2 \alpha} \oplus \mathbb{C} X_{ \pm \alpha} \\
\widetilde{\mathfrak{h}} & =\mathbb{C} \widetilde{h} \\
\tilde{\mathfrak{n}}_{ \pm} & =\mathbb{C} \widetilde{x}_{ \pm 2 \alpha} \oplus \mathbb{C} \widetilde{x}_{ \pm \alpha}
\end{aligned}
$$

- $U=R \otimes_{U(\mathfrak{H})} U(\mathfrak{G})$
- $I=U \mathfrak{N}_{+}$
- $Z=Z(\mathfrak{G}, \mathfrak{g} ; D)=N_{U}(I) / I$
$N_{U}(I)$ is the normalizer of I in U
- Z is called the diagonal reduction algebra of $\mathfrak{o s p}(1 \mid 2)$
- Z is called the diagonal reduction algebra of $\mathfrak{o s p}(1 \mid 2)$
- Below: "double l" is the subspace $\Pi=U \mathfrak{N}_{+}+\mathfrak{N}_{-} U$,
- Z is called the diagonal reduction algebra of $\mathfrak{o s p}(1 \mid 2)$
- Below: "double l" is the subspace $\Pi=U \mathfrak{N}_{+}+\mathfrak{N}_{-} U$,
- canonical projection of super vector spaces $U \rightarrow U / I$ induces an isomorphism of Z with the algebra A

$$
Z \cong A=(U / \Pi, \diamond)
$$

- Z is called the diagonal reduction algebra of $\mathfrak{o s p}(1 \mid 2)$
- Below: "double l" is the subspace $\Pi=U \mathfrak{N}_{+}+\mathfrak{N}_{-} U$,
- canonical projection of super vector spaces $U \rightarrow U / I I$ induces an isomorphism of Z with the algebra A

$$
Z \cong A=(U / \Pi, \diamond)
$$

- \diamond is an associative product on the double coset space $U / I I$ defined through the extremal projector [Tol85; Tol11; HW22].
- Z is called the diagonal reduction algebra of $\mathfrak{o s p}(1 \mid 2)$
- Below: "double I" is the subspace $\Pi=U \mathfrak{N}_{+}+\mathfrak{N}_{-} U$,
- canonical projection of super vector spaces $U \rightarrow U / \mathbb{I}$ induces an isomorphism of Z with the algebra A

$$
Z \cong A=(U / \Pi, \diamond)
$$

- \diamond is an associative product on the double coset space $U / I I$ defined through the extremal projector [Tol85; Tol11; HW22].
- Generators of the reduction algebra A (as an R-ring): $\bar{x}_{\beta}=\widetilde{x}_{\beta}+\mathbb{I}$, $\bar{h}=\widetilde{h}+$ II

For a more thorough account of superified spaces, their maps, and other non-classical notions: [CW12; Mus12] or Section 2-b of [BK02].

References

[BK02] J. Brundan and A. Kleshchev. "Hecke-Clifford superalgebras, crystals of type $A_{2 l}^{(2)}$ and modular branching rules for \widehat{S}_{n} ". arXiv:math/0103060 (July 2002). arXiv: math/0103060.
[CW12] S.-J. Cheng and W. Wang. Dualities and Representations of Lie Superalgebras. Vol. 144. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. ISBN: 978-0-8218-9118-6. DOI: 10.1090/gsm/144.
[HW22] J. T. Hartwig and D. A. Williams II. "Diagonal reduction algebra for $\mathfrak{o s p}(1 \mid 2)^{\prime \prime}$. Theoretical and Mathematical Physics 210.2 (Feb. 2022), pp. 155-171. ISSN: 0040-5779, 1573-9333. DOI: 10.1134/S0040577922020015.
[Mus12] I. M. Musson. Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics v. 131. Providence, R.I: American Mathematical Society, 2012. ISBN:
978-0-8218-6867-6.

