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In [HW22], the diagonal reduction algebra Z (G, g;D) of the Lie
superalgebra osp(1|2) is initially given as a quotient algebra isomoprhic to
the superalgebra A
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• G: Lie superalgebra osp(1|2)× osp(1|2)

• δ: osp(1|2) → G, x 7→ (x , x) diagonal embedding

• g: reductive image of osp(1|2) under δ

• p: reductive complement of g: (p⊕ g
g-modules

= G)

• H: Cartan sublagebra of g: CH

• D: ⟨{H + n | n ∈ Z}⟩monoid multipicative set
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• basis of osp(1|2) : {x−2α, x−α, h, xα, x2α}

• supercommutator [·, ·] (and with the usage of ± = −∓ as a
dependent parallel within any single equation):

[h, x±kα] = ∓kx±kα, [x−kα, xkα] = h, k ∈ {1, 2},
[x±α, x±α] = ∓2x±2α, [x±α, x∓2α] = x∓α, [x±2α, x±α] = 0.

• triangular decomposition:

osp(1|2) = n− ⊕ h⊕ n+, h = Ch, n± = Cx±2α ⊕ Cx±α
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• R = D−1U(H) ring of dynamical scalars

• D−1U(H) = C[H][(H − n)−1 | n ∈ Z]

• Xβ = (xβ, xβ) ∈ g

• Xβ is identified with xβ ⊗ 1 + 1 ⊗ xβ ∈ U(G) as an element of
R ⊗U(H) U(G)

• x̃β = (xβ,−xβ) ∈ p

• x̃β is identified with xβ ⊗ 1 − 1 ⊗ xβ ∈ U(G) as an element of
R ⊗U(H) U(G)

• H for (h, h) ∈ g

• H is identified with h ⊗ 1 + 1 ⊗ h ∈ U(G) as an element of
R ⊗U(H) U(G)

• h̃ for (h,−h) ∈ p

• h̃ is identified with h ⊗ 1 − 1 ⊗ h ∈ U(G) as an element of
R ⊗U(H) U(G)
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• Underlying the theory is the g-module decomposition

G = g⊕ p = (N− ⊕ H⊕N+)⊕ (ñ− ⊕ h̃⊕ ñ+)

• g ∼= p, X ↔ x̃

N± = CX±2α ⊕ CX±α

h̃ = Ch̃

ñ± = Cx̃±2α ⊕ Cx̃±α

• U = R ⊗U(H) U(G)

• I = UN+

• Z = Z (G, g;D) = NU(I )/I NU(I ) is the normalizer of I in U
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• Z is called the diagonal reduction algebra of osp(1|2)

• Below: “double I” is the subspace II = UN+ +N−U,

• canonical projection of super vector spaces U → U/II induces an
isomorphism of Z with the algebra A

Z ∼= A = (U/II,♢)

• ♢ is an associative product on the double coset space U/II defined
through the extremal projector [Tol85; Tol11; HW22].

• Generators of the reduction algebra A (as an R-ring): x̄β = x̃β + II,
h̄ = h̃ + II
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For a more thorough account of superified spaces, their maps, and other
non-classical notions: [CW12; Mus12] or Section 2-b of [BK02].
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